

Rev. L, May 2024

FOR DEPENDABLE, LONG LIFE OPERATION WHERE POSITION, L SPEED, PRESSURE OR FORCECONTROSYSTEMS HAVE HIGH DYNAMIC RESPONSE REQUIREMENTS

62 SERIES TWO STAGE SERVO VALVES

62 SERIES SERVO VALVES

The 62 Series flow control servovalves are throttle valves for 3- and preferably 4-way applications. They are a standard performance, two-stage design that covers the range of rated flows from 2.5 to 20 gpm at 1000 psi valve drop. The output stage is a closed center, fourway sliding spool. The pilot stage is a symmetrical doublenozzle and flapper, driven by a double air gap, dry torque motor. Mechanical feedback of spool position is provided by a cantilever spring. The valve design is simple and rugged

for dependable, long life operation. These valves are suitable for electrohydraulic position, speed, pressure or force control systems with high dynamic response requirements.

Principle of operation

An electrical command signal (flow rate set point) is applied to the torque motor coils, and creates a magnetic force which acts on the ends of the pilot stage armature. This causes a deflection of the armature/flapper assembly within the flexure tube.

Deflection of the flapper restricts fluid flow through one nozzle which is carried through to one spool end, displacing the spool.

Movement of the spool opens the supply pressure port (P) to one control port, while simultaneously opening the tank port (T)/return port (R) to the other control port. The spool motion also applies a force to the cantilever spring, creating a restoring torque on the armature/flapper assembly.

Once the restoring torque becomes equal to the torque from the magnetic forces, the armature/flapper assembly moves back to the neutral position, and the spool is held open in a state of equilibrium until the command signal changes to a new level.

In summary, the spool position is proportional to the input current and with constant pressure drop across the valve, flow to the load is proportional to the spool position.

VALVE FEATURES

- 2-stage design with dry torque motor
- Low friction double nozzle pilot stage
- High spool control forces
- High dynamics

- Low cost design
- Rugged, long-life design
- High resolution, low hysteresis
- Completely set-up at the factory

The actual flow is dependent upon electrical command signal and valve pressure drop. The flow for a given valve pressure drop can be calculated using the square root function for sharp edge orifices:

$$Q = Q_N \qquad \sqrt{\frac{\Delta p}{\Delta p_N}}$$

Q [gpm] = calculated flow $Q_N [gpm] = rated flow$ $\Delta p [psi] = actual valve pressure drop$

 Δp_{N} [psi] = rated valve pressure drop

This catalog is for users with technical knowledge. To ensure that all necessary characteristics for function and safety of the system are given, the user has

to check the suitability of the products described here. In case of doubt, please contact Moog Inc.

62 SERIES

GENERAL TECHNICAL DATA

Operating Pressure

ports P, A/1, and B/2 up to 3,000 psi port T/R up to 2,000 psi

Temperature Range

Fluid 0°F to 200°F Ambient 0°F to 200°F

Seal Material Viton, others on request **Operating Fluid** Compatible with common hydraulic fluids, other fluids

on request.

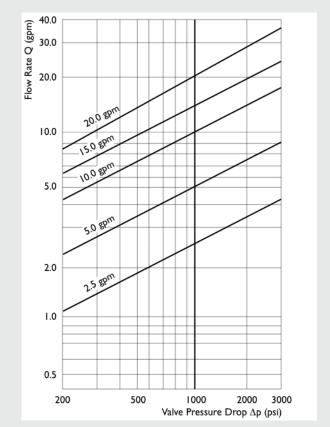
Recommended viscosity 60-450 SUS @ 100°F

System Filtration: High pressure filter (without bypass, but with dirt alarm) mounted in the main flow and if possible, directly upstream of the valve.

Class of Cleanliness: The cleanliness of the hydraulic fluid greatly effects the performance (spool positioning, high resolution) and wear (metering edges, pressure gain, leakage) of the servovalve.

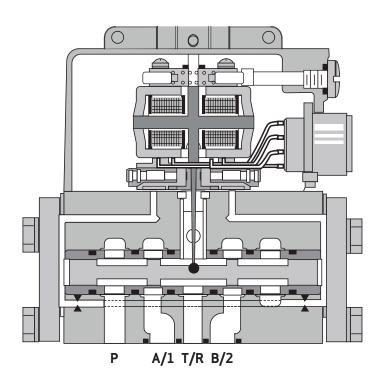
Recommended Cleanliness Class

For normal operation ISO 4406 < 14/11 For longer life ISO 4406 < 13/10


Filter Rating Recommended

For normal operation $B10 \rightarrow 75 (10 \, \mu \text{m absolute})$ For longer life $\beta 5 \rightarrow 75 (5 \mu m \text{ absolute})$ Any position, fixed or moveable. Installation Operations

Vibration 30 g, 3 axes 2.7 lb. (1.2 kg)

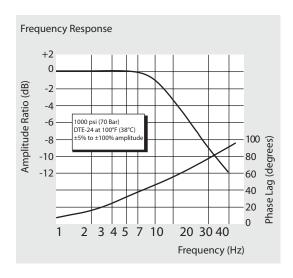

Weight **Shipping Plate**

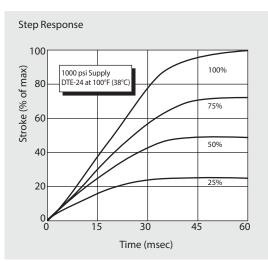
Delivered with an oil sealed shipping plate

Valve Flow Diagram

Valve flow for maximum valve opening (100% command signal) as a function of the valve pressure drop.

Rev. L, May 2024 3

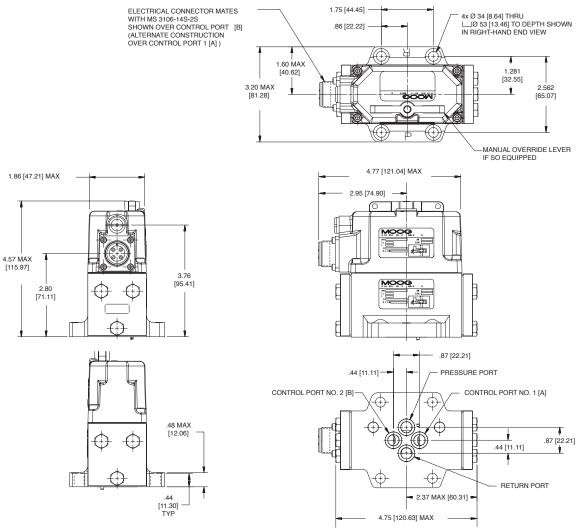

62 SERIES TECHNICAL DATA

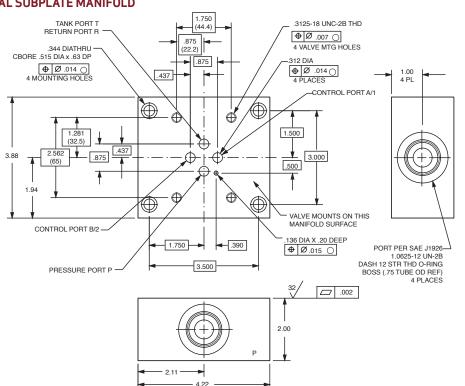

ModelType	62
Mounting Pattern	ISO 10372 - 04-04-0-92
Valve Body Version	4-way 2-stage with spool busing design
Pilot Stage	Nozzle/Flapper, High flow
Pilot Connection	Internal only

Rated Flow	(±10%) at ΔpN = 1,000 ps	[gpm]	2.5	5.0	10.0	15.0	20.0
Response Time*		[ms]	60	60	60	60	60
Threshold*		[%]			<1%		
Hysteresis*		[%]			<5%		
Null Shift	at ΔT = 100°F	[%]			<5%		
Null Leakage Flow	max.	[gpm]			0.35 TO 0.55		

^{*} Measured at 1,000 psi operating pressure

Typical characteristic curves with ±5% to ±100% input signal, measured at 1,000 psi operating pressure.




Rev. L, May 2024

62 SERIES

INSTALLATION DRAWINGS

TYPICAL SUBPLATE MANIFOLD

Null Adjust: Flow out of Control Port B will increase with clockwise rotation of null adjust screw (1/8 hex key).

The mounting manifold must conform to ISO 10372-04-04-0-92

Surface to which valve is mounted requires a $\sqrt[3]{\left[\Delta\Delta\right]}$ finish,flat within 0.002 [0.05] TIR.

Rev. L, May 2024 5

62 SERIES

MOUNTING REQUIREMENTS

Recommended Mounting Seals

Material dependant on application

- 1.78 mm (0.070 in) cross-section x 10.82 mm (0.426 in) inside diameter, 90 durometer
- Equivalent AS83248/2 size -013

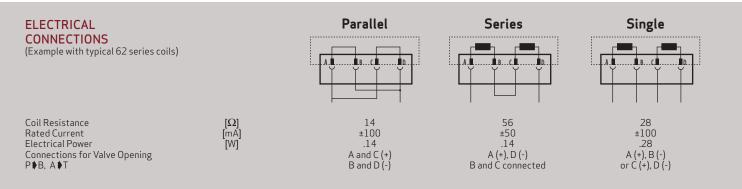
Recommended Mounting Screws

Material dependant on application

- SHCS 5/16 x 1.0 long. Grade 8 minimum
- SHCS M8 x 25 long. Grade 10.9 minimum

ELECTRICAL CONNECTIONS

Rated current and coil resistance


Two different coil designs are available for 62 Series Servovalves. See Table 1.

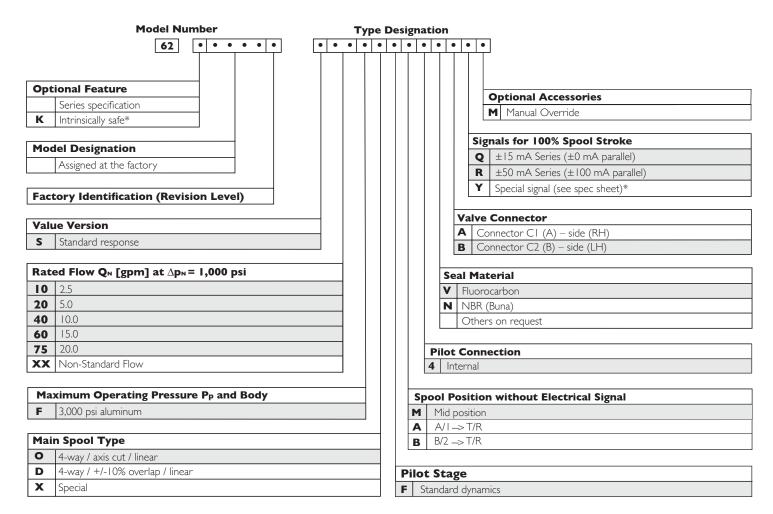
Coil connections

A four-pin electrical connector (that mates with an MS3106R14S-2S) is standard. All four torque motor leads are available at the connector so external connections can be made for series, parallel or differential operation.

Servoamplifier

The servovalve responds to input current, therefore a servoamplifier that has high internal impedance (as obtained with current feedback) should be used. This will reduce the effects of coil inductance and will minimize changes due to coil resistance variations.

 $Note: Before\ applying\ electrical\ signals, the\ pilot\ stage\ has\ to\ be\ pressurized.$


TABLE 1

Nominal	Recommended Rated Curent-mA		Approximate Coil Inductance*-Henrys			
Resistance Per Coil at 77°F (25°C) Ω	Parallel, Differential or Single Coil Operation	Series Coils	Single Coils	Series Coils	Parallel Coils	
28	100	50	0.2	0.8	0.2	
300	30	15	2	7	2	

^{*} Measured at 50 Hz.

Rev. L, May 2024

62 SERIES ORDERING INFORMATION

Preferred configurations highlighted. All combinations may not be available. Options may increase price and delivery. Technical changes are reserved.

ACCESSORIES AND SPARE PARTS

Part name	Description	Material	Moog part number
Maintenance kit	Base o-rings	FKM per AMS7259	B52555RK206K001
	Additional o-rings required for filter access	Note that o-ring material is dependant on application	
	Filter		

Rev. L, May 2024 7

^{*} Optional designs are available with intrinsically safe coils (FM,CSA and ATEX approved)

MORE PRODUCTS. MORE SUPPORT.

Moog designs a range of motion control products to complement those featured in this document. Moog also provides service and support for all of our products. For more information, contact the Moog facility closest to you.

Australia +61 3 9561 6044 Service + 61 3 8545 2140 info.australia@moog.com service.australia@moog.com

Brazil +55 11 3572 0400 info.brazil@moog.com service.brazil@moog.com

Canada +1 716 652 2000 info.canada@moog.com

China +86 21 2893 1600 Service +86 21 2893 1626 info.china@moog.com service.china@moog.com

France +33 1 4560 7000 Service +33 1 4560 7015 info.france@moog.com service.france@moog.com

Germany +49 7031 622 0 Service +49 7031 622 197 info.germany@moog.com service.germany@moog.com

Hong Kong +852 2 635 3200 info.hongkong@moog.com India +91 80 4057 6666 Service +91 80 4057 6604 info.india@moog.com service.india@moog.com

Ireland +353 21 451 9000 info.ireland@moog.com

Italy +39 0332 421 111 Service 800 815 692 info.italy@moog.com service.italy@moog.com

Japan +81 46 355 3767 info.japan@moog.com service.japan@moog.com

Korea +82 31 764 6711 info.korea@moog.com service.korea@moog.com

Luxembourg +352 40 46 401 info.luxembourg@moog.com

The Netherlands +31 252 462 000 info.thenetherlands@moog.com service.netherlands@moog.com Singapore +65 677 36238 Service +65 651 37889 info.singapore@moog.com service.singapore@moog.com

South Africa +27 12 653 6768 info.southafrica@moog.com

Spain +34 902 133 240 info.spain@moog.com

Sweden +46 31 680 060 info.sweden@moog.com

Turkey +90 216 663 6020 info.turkey@moog.com

United Kingdom +44 (0) 1684 858000 Service +44 (0) 1684 278369 info.uk@moog.com service.uk@moog.com

USA +1 716 652 2000 info.usa@moog.com service.usa@moog.com

For product information, visit www.moog.com/industrial

Moog is a registered trademark of Moog Inc. and its subsidiaries. All trademarks as indicated herein are the property of Moog Inc. and its subsidiaries. ©2024 Moog Inc. All rights reserved. All changes are reserved.

62 Series Flow Control Servo Valves TJW/PDF, Rev. L, May 2024, CDL6267

