
WHITE PAPER

© Moog Inc. 2024
This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.33 or EAR Part 772

Microcontroller based Motor Control for Space
Applications

Aaron Maurice
Advanced Programs Group
Moog Space and Defense

Gilbert, Arizona
amaurice@moog.com

Mark Broadbent
Advanced Programs Group
Moog Space and Defense

Gilbert, Arizona
mbroadbent2@moog.com

Abstract—This paper discusses the benefits and challenges of

using a microcontroller for motor control in space applications
instead of traditional FPGA or ASIC based designs.

Keywords— Rad-Hard microcontroller, SAMRH Family, motor
controller, embedded flight software

I. INTRODUCTION
Motor controllers are widely used in space applications for

pointing, attitude control, deployment and other critical
mechanisms required for the successful operation of a
spacecraft. Most motor controllers for space applications use an
Application-Specific Integrated Circuit (ASIC) or an Field
Programmable Gate Array (FPGA) for the logic in the design.
The motor controller accepts commands from the spacecraft,
controls the driver circuits to deliver power to the motor, and
may incorporate feedback to better control the motor torque,
jitter, velocity, and/or position of the mechanism. Recent
advances in microcontrollers such as the Microchip SAMRH
Family have enabled a new solution for space applications in
motor controller design that can be more flexible than an ASIC
and lower cost than a FPGA with similar performance.

II. MOTOR CONTROLLER FUNCTIONAL COMPARISION
A simplified motor controller block diagram is shown in Fig.

1. The motor controller’s spacecraft interfaces include power
and command/data. Commands are first transmitted to the motor
controller’s logic. The motor controller’s logic then turns on and
off the driver circuits to deliver power to the motor per the
required commutation scheme. Optionally, feedback can be
added to precisely control the delivered current or sense and
control the position/velocity of the mechanism.

Logic

Power

Command

Feedback

Driver

Driver

Driver

Motor Controller

Motor

Sensor

Data

Fig. 1. Simplified Motor Controller Block Diagram

The lowest cost motor controllers are typically an ASIC
based solution like the Moog Electronics Control Unit (ECU)
[1]. These designs work well for applications that drive a motor
with a fixed command interface and simple or no feedback.

FPGA based solutions are extensively used for more
advanced motor controllers such as the Moog Gimbal Control
Electronics (GCE) [2] or Moog Rikishi Electronics Unit (REU)
[3]. The configurability of the FPGA allows the designer to
create a motor controller that can support almost any command
interface, multiple motors and almost any feedback. Some
advanced FPGAs also support softcore or hardcore processors
that can provide floating point math for more complex control
loop implementations. These solutions usually require support
circuitry including multiple power rails, memory, analog and
digital interfaces in addition to the driver and feedback circuits.

The less expensive FPGA based solutions typically use
antifuse parts that can only be programmed once. These are
commonly used for motor controllers because they can start
running almost immediately after power up and don’t require
time to load the FPGA image. This allows spacecraft to keep
these motor controllers powered down or idle and then quickly
resume operations when needed. Antifuse FPGA solutions
cannot update the logic after it is first loaded, and these FPGAs
have less configurable logic which can limit the complexity of
the implemented control scheme.

The more expensive FPGA based solutions are SRAM or
Flash based. Many of these designs can support complex
interfaces, multiple motors and run multiple control loops.
While these types of designs offer high performance and
customization, the cost of the FPGA solution drives higher
motor controller costs and higher power consumption. An
important strength of these parts is that they can be
reprogrammed for different applications or updated during
development to improve or tune the control response.

An alternative approach is to use a microcontroller such as
the Microchip SAMRH707© instead of the ASIC or FPGA for
the logic in the motor controller such as in the Moog Motor
Control Electronics (MCE). Modern microcontrollers have
evolved to a complete system on a chip (SOC) design with
integrated bootloaders, RAM, non-volatile memory, oscillators
and multiple hardware peripherals providing communication
links, external memory interfaces, pulse width modulation
(PWM) blocks, analog to digital converters (ADC) and digital

WHITE PAPER

This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.33 or EAR Part 772

to analog converters (DAC). The block diagram of the
SAMRH707 is shown in Fig. 2.

Fig. 2. SAMRH707 Block Diagram ©Microchip

A. Motor Controller Command and Telemetry Interfaces
At a minimum, the command interface needs to

communicate the simple commands to move a motor such as
when to move and what direction to go. More advanced
interfaces can change operational modes, adjust open or closed
loop control options, and query status from the controller.

The command interface to an ASIC solution for a stepper
motor is typically a discrete interface of step, direction and
enable. For an ASIC controlling a BLDC motor, it is common
to see enable and direction discretes with an adjustable voltage
input to control speed/torque. More complex command
interfaces are possible, but that adds significant complexity to
the ASIC design which may limit the applications the ASIC is
well suited for.

An FPGA solution can implement almost any command
interface such as RS-422, LVDS, SpaceWire, 1553, discretes
and Ethernet. The interface is implemented in logic in the FPGA
and can be customized for the application.

The command interface for the microcontroller solution can
support almost any spacecraft interface like the FPGA including
a UART (RS-422/LVDS), SpaceWire, 1553, discretes, CAN-
FD and discretes. The bootloader can be directly accessed via
the UART (RS-422/LVDS) or SpaceWire which provides a way
to load software without running Application Software (ASW)
first. Microcontroller-based designs can provide a way to load
new software without needing board level access as this is not
always available later once testing has started. This can also be
helpful to initially load software or adjust motor control and
performance on orbit. The integration of these control interfaces
also decreases the time to implement a standard interface
compared to an FPGA. Configuring hard interface blocks are
made easier with tools like Microchip’s freely available
Harmony software development framework [4] for interface
configuration vs writing custom VHDL code.

B. Motor Torque, Velocity and Position Feedback
The simplest motor controllers have no feedback sensing

controlling the motor in an open loop mode. This is most

common in simple stepper controllers because the relative
position of the stepper motor can be reliably inferred based on
how many steps the motor has been commanded to move.

Many motor controllers include current sensing feedback
which is necessary to reliably control the output current over the
wide range of operating conditions. Output current is important
as it is proportional to the torque output of the motor. Most
current sense circuits amplify the differential voltage over a
shunt resistor which provides a voltage proportional to the
current that can then be read by an Analog to Digital Converter
(ADC) and converted back to current for the logic device. Less
common current sense approaches include hall-effect current
sensing.

G
S

D

G
S

D

G
S

D

G
S

D

G
S

D

G
S

D

Vsupply

Motor

Fig. 3. Typical current sensing options on a 3-phase motor

There are three main options for motor current sensing. The
simplest approach is a low-side current sense using an
inexpensive amplifier and sense resistor as shown in blue in Fig.
3. The disadvantage of this approach is that it disrupts the ground
path and cannot detect a short in the motor. Another option is to
use a high-side current sense as shown in red in Fig. 3 to reduces
the dynamic voltage impacts on the system, but this requires a
more expensive amplifier design for the sense resistor that can
handle the higher common mode voltage. The high-side current
sense can detect a motor short but doesn’t provide insight into
which phases are carrying the current, thus preventing ideal
motor control. The preferred in-line current sense shown in
green in Fig. 3 reads the positive or negative current over a shunt
on each phase providing the true current the motor is consuming.
In most applications, only two out of three phases need to be
sensed to capture the total current through the motor. This
requires the most complicated and expensive amplifier design,
but provides the best current feedback for the motor torque and
jitter control.

Velocity and/or position feedback is required for a motor
controller to perform close loop control for servo or gimbal
applications. Common position and velocity feedback options
include optical encoders, potentiometers, resolvers, linear
variable differential transformers, hall effect sensors, quadrature
decoders, 2-bit Gray up/down counter and back EMF. The data
from these options can be a telemetry interface, analog output
that is read by an ADC or a discrete as shown in TABLE I.

WHITE PAPER

This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.33 or EAR Part 772

TABLE I. COMMON FEEDBACK OPTIONS AND INTERFACE
REQUIREMENTS

Feedback Per Motor

Bus Voltage 1 ADC Channel

Motor Current 1-4 ADC Channels

Optical Encoder 1 Telemetry interface

Potentiometers 1+ ADC Channels

Resolvers Telemetry interface or 3+ ADC channels

Hall Effect Sensors 3+ Discrete inputs

Quadrature Decoder 2 Discrete inputs with timer

2-bit Gray up/down count 2 Discrete inputs with timer

Back EMF 3+ ADC channels

Many ASIC solutions lack feedback because feedback
options vary significantly based on the application. Some ASIC
solutions can support current sensing with fixed or variable
current setpoints and velocity control based on an analog voltage
input. Other ASIC designs feature passthrough circuits that
allow feedback sensing to be passed through the motor
controller back to the spacecraft. This allows the ASIC to be
used in more applications but pushes the sensing and control
burden to the spacecraft to handle the additional sensing and
control requirements.

The FPGA can interface to any feedback described in
TABLE I. , but many require additional circuitry to be added to
the design and have limitations. Feedback that can be sensed by
an ADC will use an ADC integrated circuit (IC). A common 12-
bit ADC used in applications like this feature eight channels and
communicates back to the FPGA with a SPI connection. The
main limitation of this type of a design is that the sample time is
not closely tied to the PWM waveform as the FPGA must first
communicate to the ADC to sample, and then communicate
again to retrieve the data. The resulting timing latency is often
multiple microseconds or greater.

If the solution requires more than eight ADC channels (such
as current control plus resolver sensing), multiple ADCs may be
required. More specialized ADC solutions also exist such as the
ability to read multiple channels in parallel at higher rates. In
most cases, more specialized parts are much more expensive.

The FPGA can also support feedback from telemetry
interfaces or discretes. Almost any source of feedback can be
integrated as the logic can be customized for the application.

The microcontroller has an integrated 12-bit 16 channel
ADC that can run up to a 1 MSPS conversion rate. This ADC
can be triggered from the PWM block to sample at consistent or
ideal locations in the PWM waveform. This allows for more
accurate current sampling with less latency that can be fed back
into a current control loop necessary for many types of motor
control.

The 16 available ADC channels can support current sensing
on every motor phase and any other position/velocity feedback
shown in TABLE I. without running out of available ADC
channels. The combination of the integrated ADC with precise

timing control relative to the PWM waveform and quantity of
ADC channels is a significant cost and complexity advantage
over an FPGA based solution.

The microcontroller also has four FLEXCOM interfaces that
can be configured to support UART, SPI or I2C interfaces. One
or two of these interfaces may be allocated to support the
spacecraft UART or external memory, but the remaining
interfaces can be used to interface to sensors with telemetry
feedback such as an encoder.

The analog and digital interfaces are also configured using
the Harmony software development framework to set up each
interface as required for the application.

C. Motor Driver
A motor controller needs to be able to source or sink current

to each phase of the motor. The configuration of the sinking or
sourcing of each phase varies over time to form the commutation
for the motor. The most common way to do this is with a half
bridge circuit as shown in Fig. 3. This example is a 3-phase
motor, but the addition of a fourth phase can allow the motor
controller to handle 2-phase, 3-phase, or 4-phase motors.
Typically, current will be driven from the high side of one or
two phases through the motor to a ground connection on one or
two phases. Some motor controllers are configured for unipolar
applications where the motor phase is always powered, and the
motor controller only switches on the low side.

If current control is required for the application, the output
switches are typically Pulse Width Modulated (PWM). A PWM
scheme will select a switching frequency and then turn on the
switch for a portion of that period for a duty cycle. The longer
the period, the more current flows through the motor.

Multiple PWM schemes can be implemented from high-side
2-quadrant, low-side 2-quadrant, 4-quadrant, trapezoidal,
sinusoidal and Field Oriented Control (FOC). Within each
scheme, multiple variations exist that provide small
improvements in control or to mitigate feedback for certain
applications.

Low power motor driver circuits can be directly integrated
into an ASIC design without an external driver circuit reducing
the amount of support circuitry required for the motor controller
and in turn reducing the cost of the solution. Higher power motor
drives typically use the same external motor driver circuits as
used in FPGA or microcontroller applications.

The strength of the FPGA is in the motor driver interface.
Any external motor driver circuit can be used here and interfaced
to available IO and logic. The design of the FPGA is well
tailored for synchronizing multiple outputs to ensure the
multiple phases for a motor switch at the same time for optimal
control. It is common to have multiple motors attached to a
single FPGA as most FPGAs have more than enough IO to
support two or more motor drives and their feedback. This in
turn allows for multiple motors to be synchronized in an
application to implement system level control.

The microcontroller interfaces to the motor drivers with two
PWM controllers. Each PWM controller generates outputs
pulses on four channels independently according to parameters
defined per channel. Each channel controls two complementary

WHITE PAPER

This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.33 or EAR Part 772

square output waveforms with selectable characteristics such as
period, duty-cycle, polarity, and dead-times. The channels in
each PWM controller can also be synchronized to enable
multiple channels to switch at the same time.

The implementation of the PWM controller in hardware
replicates the best feature of a FPGA based motor controller
with synchronized channel outputs. The PWM controller can
also be set up in the Harmony software development framework
and updated with short commands in code. Once running, the
PWM controller operates independently freeing up the
microcontroller to sense the feedback, run the control loops,
update the PWM parameters and send telemetry. The PWM
parameters are also double buffered to prevent an update from
affecting the behavior of the current PWM waveform and only
changing the behavior of the next waveform.

D. Control Logic
Many motor controllers implement control loops to optimize

the motor movement for the application. The most common is a
current control loop that uses the feedback from the current
sensing to adjust the PWM duty cycle to meet the current
setpoint as shown in Fig. 4. This is important in applications that
have precise control requirements or wide temperature
variations.

MCE Close Loop Control

Position
Control

Speed
Control

Torque
Control MOTOR

Speed
Sensing

Motor Phase
Current Sensors

Motor
Driver

Position
Sensors

Motor
CMD

Position
(Delta Time)

Optional

Optional

Fig. 4. Simplified Motor Closed Loop Control

Motor controllers for gimbled and servo control applications
typically require position and/or velocity feedback. This
feedback is used in the outer control loops to drive a current
setpoint for the inner current loop to achieve precise motion
control.

An ASIC used as a simple stepper only needs to respond to
input commands to increment or decrement commutation in an
open loop control mode. If the ASIC supports current feedback
or a speed input, a control loop is used to PWM the motor driver
circuits to achieve the setpoint. In most cases, ASICs perform
very simple control loops due to the lack of feedback.

Most control loops are possible to implement in an FPGA.
Some FPGAs support soft or hardcore processors to help with
floating point math in control loop calculations. With feedback,
it is common to see current control loops implemented along
with position/velocity control. One advantage of implementing
the control loops in FPGA logic is that the user can typically
bound the timing performance of the control loop more tightly
than is possible in a microcontroller. In some cases, bit depth in
calculations is sacrificed due to the limitations of the FPGA.

The microcontroller’s strength in motor control is supporting
a wide variety of control loops. Because the control loops are
written in C code, they can be implemented very close to how

they are developed in a motor control simulation. This makes it
much easier to verify the implemented control loops and ensure
the implementation matches the simulation for a project.

The execution time of the control loops will vary more than
in a FPGA based solution, but this is rarely a problem as the
microcontroller can run more calculations per second than most
FPGA solutions and natively perform floating point math.

The microcontroller also shares a common architecture with
other Microchip Arm based microcontrollers. These
microcontrollers are commonly used in commercial and
industrial applications in much higher volumes than what we see
in space applications. This creates a large ecosystem of
examples and demos that can be ported to the microcontroller to
enable the user to experiment with various control schemes
which can save significant time compared to starting from
scratch.

E. Logic and Software Configuration
The ASIC is configured by design when it is fabricated.

Some ASICs allow some configuration with external jumpers or
command inputs.

An antifuse based FPGA is programmed initially once
before installation onto a board. Once the FPGA is programmed,
it cannot be updated. A SRAM or Flash based FPGA is typically
loaded with a bootloader from a saved image in memory. The
bootloader can also implement desired features such as
redundant software images that are often required for space
applications to protect against radiation caused bit flips. These
images can often be updated to implement new features, adjust
operational/control schemes, and tune the motor control.

The microcontroller can load application software (ASW)
directly from internal flash or from external memory through a
parallel interface. A ROM bootloader is also available to load
software from selected interfaces. The bootloader validates the
software’s CRC to ensure the software is valid before running.
The available interfaces to load software through the bootloader
include external SPI memory, or a direct software load on start
up through a UART or SpaceWire link. The bootloader also
permits the user to load software directly to memory without
running ASW first. This feature is helpful to recover from a
software issue that prevents the normal operation of software
which is typically required to access memory.

One limiting feature of the bootloader implementation is that
the user cannot specify a secondary software image to load if the
primary image fails. This is often required in critical applications
as memory can be corrupted in radiation environments over
time. This can be mitigated at a higher system level as the
bootloader can be used to write a new software image to replace
the corrupted image or by loading software directly from the
communication interface.

III. SUMMARY

A. ASICs
The ASIC implementation will typically require less support

circuitry and have well established test and verification
programs since the motor controller will only operate over a
known and defined range.

WHITE PAPER

This document consists of general capabilities information that is not defined as controlled technical data under ITAR Part 120.33 or EAR Part 772

The initial ASIC development can be very expensive as the
developer must complete the process of designing, laying out
and then fabricating a custom IC. The design process must
choose the interfaces and options to support which then get built
into the final motor controller. These choices also fix the
interfaces which can be a constraint on the flexibility of the
product for future applications.

The main downside of the ASIC are the high initial
development costs and the limited flexibility of the design to
support new applications as motor control concepts constantly
add new combinations of feedback mechanisms, commutation
schemes and control logic to tailor solutions to optimize the
performance of a system. The main upside of the ASIC solution
is that the cost can be much lower if the application’s
requirements can be met by an existing design.

B. FPGAs
FPGA based motor controllers are the most common

solutions for space applications. The flexibility to configure
logic enables almost any command input and control scheme.
FPGAs also come in many different sizes with different feature
sets enabling simple designs to extremely complex exquisite
solutions. The main downside of FPGA solutions is the required
complexity to add in the various support circuits and the total
cost of solution.

C. Microcontroller
The microcontroller can replace the FPGA most designs that

controls one or two motors. The integration of the command
interface and feedback is typically quicker, and the control loops
can be developed to match simulations much more easily.
Integrating capabilities into the microcontroller such as the ADC
also reduces the complexity and cost of the design while
improving performance.

 Being able to reprogram the microcontroller also adds a
capability normally associated with significantly more

expensive FPGAs that can significantly reduce the integration
risk.

If a design requires the control of more than two motors, the
reduced cost of the microcontroller compared to a larger FPGA
may still result in a lower system cost overall. Many
sophisticated systems feature multiple motor controllers tied
back to a Single Board Computer (SBC) that commands the
individual elements achieve a system level movement solution.

One additional benefit of using a microcontroller is that the
pool of C software developers is significantly larger than VHDL
developers. It is often easier find engineers who have experience
on similar platforms and can learn a new one to start developing
C software compared to VHDL.

ACKNOWLEDGMENT
Moog offers solutions in all three of these motor control

approaches as it seeks to meet the demands of precision control
and action needs of the space industry. Moog has built multiple
microcontroller-based motor controllers for space applications
that control 2-phase and 3-phase BLDC motors and 3-phase
stepper motors. Moog’s Motor Controller Electronics (MCE)
using a microcontroller enables designs that provides a high
performance, low cost, and high reliability motor control
solution.

REFERENCES
[1] https://www.moog.com/content/dam/moog/literature/sdg/space/spacecra

ft-mechanisms/moog-2-and-4-channel-ecu-datasheet.pdf
[2] https://www.moog.com/content/dam/moog/literature/sdg/space/avionics/

moog-gimbal-electronics-technical-datasheet.pdf
[3] https://www.moog.com/products/controllers-controls-software/space-

controllers/spacecraft-controllers.html
[4] https://www.microchip.com/en-us/tools-resources/configure/mplab-

harmony

