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Abstract—This paper discusses the benefits and challenges of 

using a microcontroller for motor control in space applications 
instead of traditional FPGA or ASIC based designs. 

Keywords— Rad-Hard microcontroller, SAMRH Family, motor 
controller, embedded flight software 

I. INTRODUCTION 
Motor controllers are widely used in space applications for 

pointing, attitude control, deployment and other critical 
mechanisms required for the successful operation of a 
spacecraft. Most motor controllers for space applications use an 
Application-Specific Integrated Circuit (ASIC) or an Field 
Programmable Gate Array (FPGA) for the logic in the design. 
The motor controller accepts commands from the spacecraft, 
controls the driver circuits to deliver power to the motor, and 
may incorporate feedback to better control the motor torque, 
jitter, velocity, and/or position of the mechanism. Recent 
advances in microcontrollers such as the Microchip SAMRH 
Family have enabled a new solution for space applications in 
motor controller design that can be more flexible than an ASIC 
and lower cost than a FPGA with similar performance. 

II. MOTOR CONTROLLER FUNCTIONAL COMPARISION 
A simplified motor controller block diagram is shown in Fig. 

1. The motor controller’s spacecraft interfaces include power 
and command/data. Commands are first transmitted to the motor 
controller’s logic. The motor controller’s logic then turns on and 
off the driver circuits to deliver power to the motor per the 
required commutation scheme. Optionally, feedback can be 
added to precisely control the delivered current or sense and 
control the position/velocity of the mechanism. 
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Fig. 1. Simplified Motor Controller Block Diagram 

 

The lowest cost motor controllers are typically an ASIC 
based solution like the Moog Electronics Control Unit (ECU) 
[1]. These designs work well for applications that drive a motor 
with a fixed command interface and simple or no feedback.  

FPGA based solutions are extensively used for more 
advanced motor controllers such as the Moog Gimbal Control 
Electronics (GCE) [2] or Moog Rikishi Electronics Unit (REU) 
[3]. The configurability of the FPGA allows the designer to 
create a motor controller that can support almost any command 
interface, multiple motors and almost any feedback. Some 
advanced FPGAs also support softcore or hardcore processors 
that can provide floating point math for more complex control 
loop implementations. These solutions usually require support 
circuitry including multiple power rails, memory, analog and 
digital interfaces in addition to the driver and feedback circuits. 

The less expensive FPGA based solutions typically use 
antifuse parts that can only be programmed once. These are 
commonly used for motor controllers because they can start 
running almost immediately after power up and don’t require 
time to load the FPGA image. This allows spacecraft to keep 
these motor controllers powered down or idle and then quickly 
resume operations when needed. Antifuse FPGA solutions 
cannot update the logic after it is first loaded, and these FPGAs 
have less configurable logic which can limit the complexity of 
the implemented control scheme. 

The more expensive FPGA based solutions are SRAM or 
Flash based. Many of these designs can support complex 
interfaces, multiple motors and run multiple control loops. 
While these types of designs offer high performance and 
customization, the cost of the FPGA solution drives higher 
motor controller costs and higher power consumption. An 
important strength of these parts is that they can be 
reprogrammed for different applications or updated during 
development to improve or tune the control response. 

An alternative approach is to use a microcontroller such as 
the Microchip SAMRH707© instead of the ASIC or FPGA for 
the logic in the motor controller such as in the Moog Motor 
Control Electronics (MCE). Modern microcontrollers have 
evolved to a complete system on a chip (SOC) design with 
integrated bootloaders, RAM, non-volatile memory, oscillators 
and multiple hardware peripherals providing communication 
links, external memory interfaces, pulse width modulation 
(PWM) blocks, analog to digital converters (ADC) and digital 
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to analog converters (DAC). The block diagram of the 
SAMRH707 is shown in Fig. 2. 

 
Fig. 2. SAMRH707 Block Diagram ©Microchip 

A. Motor Controller Command and Telemetry Interfaces  
At a minimum, the command interface needs to 

communicate the simple commands to move a motor such as 
when to move and what direction to go. More advanced 
interfaces can change operational modes, adjust open or closed 
loop control options, and query status from the controller. 

The command interface to an ASIC solution for a stepper 
motor is typically a discrete interface of step, direction and 
enable. For an ASIC controlling a BLDC motor, it is common 
to see enable and direction discretes with an adjustable voltage 
input to control speed/torque. More complex command 
interfaces are possible, but that adds significant complexity to 
the ASIC design which may limit the applications the ASIC is 
well suited for. 

An FPGA solution can implement almost any command 
interface such as RS-422, LVDS, SpaceWire, 1553, discretes 
and Ethernet. The interface is implemented in logic in the FPGA 
and can be customized for the application.  

The command interface for the microcontroller solution can 
support almost any spacecraft interface like the FPGA including 
a UART (RS-422/LVDS), SpaceWire, 1553, discretes, CAN-
FD and discretes. The bootloader can be directly accessed via 
the UART (RS-422/LVDS) or SpaceWire which provides a way 
to load software without running Application Software (ASW) 
first. Microcontroller-based designs can provide a way to load 
new software without needing board level access as this is not 
always available later once testing has started.  This can also be 
helpful to initially load software or adjust motor control and 
performance on orbit. The integration of these control interfaces 
also decreases the time to implement a standard interface 
compared to an FPGA.   Configuring hard interface blocks are 
made easier with tools like Microchip’s freely available 
Harmony software development framework [4] for interface 
configuration vs writing custom VHDL code. 

B. Motor Torque, Velocity and Position Feedback 
The simplest motor controllers have no feedback sensing 

controlling the motor in an open loop mode. This is most 

common in simple stepper controllers because the relative 
position of the stepper motor can be reliably inferred based on 
how many steps the motor has been commanded to move.  

Many motor controllers include current sensing feedback 
which is necessary to reliably control the output current over the 
wide range of operating conditions. Output current is important 
as it is proportional to the torque output of the motor. Most 
current sense circuits amplify the differential voltage over a 
shunt resistor which provides a voltage proportional to the 
current that can then be read by an Analog to Digital Converter 
(ADC) and converted back to current for the logic device. Less 
common current sense approaches include hall-effect current 
sensing. 
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Fig. 3. Typical current sensing options on a 3-phase motor 

There are three main options for motor current sensing.  The 
simplest approach is a low-side current sense using an 
inexpensive amplifier and sense resistor as shown in blue in Fig. 
3. The disadvantage of this approach is that it disrupts the ground 
path and cannot detect a short in the motor. Another option is to 
use a high-side current sense as shown in red in Fig. 3 to reduces 
the dynamic voltage impacts on the system, but this requires a 
more expensive amplifier design for the sense resistor that can 
handle the higher common mode voltage. The high-side current 
sense can detect a motor short but doesn’t provide insight into 
which phases are carrying the current, thus preventing ideal 
motor control.  The preferred in-line current sense shown in 
green in Fig. 3 reads the positive or negative current over a shunt 
on each phase providing the true current the motor is consuming. 
In most applications, only two out of three phases need to be 
sensed to capture the total current through the motor. This 
requires the most complicated and expensive amplifier design, 
but provides the best current feedback for the motor torque and 
jitter control.  

Velocity and/or position feedback is required for a motor 
controller to perform close loop control for servo or gimbal 
applications. Common position and velocity feedback options 
include optical encoders, potentiometers, resolvers, linear 
variable differential transformers, hall effect sensors, quadrature 
decoders, 2-bit Gray up/down counter and back EMF. The data 
from these options can be a telemetry interface, analog output 
that is read by an ADC or a discrete as shown in TABLE I.  
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TABLE I.  COMMON FEEDBACK OPTIONS AND INTERFACE 
REQUIREMENTS 

Feedback Per Motor 

Bus Voltage 1 ADC Channel 

Motor Current 1-4 ADC Channels 

Optical Encoder 1 Telemetry interface 

Potentiometers 1+ ADC Channels 

Resolvers Telemetry interface or 3+ ADC channels 

Hall Effect Sensors 3+ Discrete inputs 

Quadrature Decoder 2 Discrete inputs with timer 

2-bit Gray up/down count 2 Discrete inputs with timer 

Back EMF 3+ ADC channels 

 

Many ASIC solutions lack feedback because feedback 
options vary significantly based on the application. Some ASIC 
solutions can support current sensing with fixed or variable 
current setpoints and velocity control based on an analog voltage 
input. Other ASIC designs feature passthrough circuits that 
allow feedback sensing to be passed through the motor 
controller back to the spacecraft. This allows the ASIC to be 
used in more applications but pushes the sensing and control 
burden to the spacecraft to handle the additional sensing and 
control requirements. 

The FPGA can interface to any feedback described in 
TABLE I. , but many require additional circuitry to be added to 
the design and have limitations. Feedback that can be sensed by 
an ADC will use an ADC integrated circuit (IC). A common 12-
bit ADC used in applications like this feature eight channels and 
communicates back to the FPGA with a SPI connection. The 
main limitation of this type of a design is that the sample time is 
not closely tied to the PWM waveform as the FPGA must first 
communicate to the ADC to sample, and then communicate 
again to retrieve the data. The resulting timing latency is often 
multiple microseconds or greater. 

If the solution requires more than eight ADC channels (such 
as current control plus resolver sensing), multiple ADCs may be 
required. More specialized ADC solutions also exist such as the 
ability to read multiple channels in parallel at higher rates. In 
most cases, more specialized parts are much more expensive. 

The FPGA can also support feedback from telemetry 
interfaces or discretes. Almost any source of feedback can be 
integrated as the logic can be customized for the application. 

The microcontroller has an integrated 12-bit 16 channel 
ADC that can run up to a 1 MSPS conversion rate. This ADC 
can be triggered from the PWM block to sample at consistent or 
ideal locations in the PWM waveform. This allows for more 
accurate current sampling with less latency that can be fed back 
into a current control loop necessary for many types of motor 
control. 

The 16 available ADC channels can support current sensing 
on every motor phase and any other position/velocity feedback 
shown in TABLE I. without running out of available ADC 
channels. The combination of the integrated ADC with precise 

timing control relative to the PWM waveform and quantity of 
ADC channels is a significant cost and complexity advantage 
over an FPGA based solution. 

The microcontroller also has four FLEXCOM interfaces that 
can be configured to support UART, SPI or I2C interfaces. One 
or two of these interfaces may be allocated to support the 
spacecraft UART or external memory, but the remaining 
interfaces can be used to interface to sensors with telemetry 
feedback such as an encoder. 

The analog and digital interfaces are also configured using 
the Harmony software development framework to set up each 
interface as required for the application. 

C. Motor Driver 
A motor controller needs to be able to source or sink current 

to each phase of the motor. The configuration of the sinking or 
sourcing of each phase varies over time to form the commutation 
for the motor. The most common way to do this is with a half 
bridge circuit as shown in Fig. 3. This example is a 3-phase 
motor, but the addition of a fourth phase can allow the motor 
controller to handle 2-phase, 3-phase, or 4-phase motors. 
Typically, current will be driven from the high side of one or 
two phases through the motor to a ground connection on one or 
two phases. Some motor controllers are configured for unipolar 
applications where the motor phase is always powered, and the 
motor controller only switches on the low side.  

If current control is required for the application, the output 
switches are typically Pulse Width Modulated (PWM). A PWM 
scheme will select a switching frequency and then turn on the 
switch for a portion of that period for a duty cycle. The longer 
the period, the more current flows through the motor. 

Multiple PWM schemes can be implemented from high-side 
2-quadrant, low-side 2-quadrant, 4-quadrant, trapezoidal, 
sinusoidal and Field Oriented Control (FOC). Within each 
scheme, multiple variations exist that provide small 
improvements in control or to mitigate feedback for certain 
applications. 

Low power motor driver circuits can be directly integrated 
into an ASIC design without an external driver circuit reducing 
the amount of support circuitry required for the motor controller 
and in turn reducing the cost of the solution. Higher power motor 
drives typically use the same external motor driver circuits as 
used in FPGA or microcontroller applications. 

The strength of the FPGA is in the motor driver interface. 
Any external motor driver circuit can be used here and interfaced 
to available IO and logic. The design of the FPGA is well 
tailored for synchronizing multiple outputs to ensure the 
multiple phases for a motor switch at the same time for optimal 
control. It is common to have multiple motors attached to a 
single FPGA as most FPGAs have more than enough IO to 
support two or more motor drives and their feedback. This in 
turn allows for multiple motors to be synchronized in an 
application to implement system level control. 

The microcontroller interfaces to the motor drivers with two 
PWM controllers. Each PWM controller generates outputs 
pulses on four channels independently according to parameters 
defined per channel. Each channel controls two complementary 
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square output waveforms with selectable characteristics such as 
period, duty-cycle, polarity, and dead-times. The channels in 
each PWM controller can also be synchronized to enable 
multiple channels to switch at the same time. 

The implementation of the PWM controller in hardware 
replicates the best feature of a FPGA based motor controller 
with synchronized channel outputs. The PWM controller can 
also be set up in the Harmony software development framework 
and updated with short commands in code. Once running, the 
PWM controller operates independently freeing up the 
microcontroller to sense the feedback, run the control loops, 
update the PWM parameters and send telemetry. The PWM 
parameters are also double buffered to prevent an update from 
affecting the behavior of the current PWM waveform and only 
changing the behavior of the next waveform. 

D. Control Logic 
Many motor controllers implement control loops to optimize 

the motor movement for the application. The most common is a 
current control loop that uses the feedback from the current 
sensing to adjust the PWM duty cycle to meet the current 
setpoint as shown in Fig. 4. This is important in applications that 
have precise control requirements or wide temperature 
variations. 
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Fig. 4. Simplified Motor Closed Loop Control 

Motor controllers for gimbled and servo control applications 
typically require position and/or velocity feedback. This 
feedback is used in the outer control loops to drive a current 
setpoint for the inner current loop to achieve precise motion 
control. 

An ASIC used as a simple stepper only needs to respond to 
input commands to increment or decrement commutation in an 
open loop control mode. If the ASIC supports current feedback 
or a speed input, a control loop is used to PWM the motor driver 
circuits to achieve the setpoint. In most cases, ASICs perform 
very simple control loops due to the lack of feedback. 

Most control loops are possible to implement in an FPGA. 
Some FPGAs support soft or hardcore processors to help with 
floating point math in control loop calculations. With feedback, 
it is common to see current control loops implemented along 
with position/velocity control. One advantage of implementing 
the control loops in FPGA logic is that the user can typically 
bound the timing performance of the control loop more tightly 
than is possible in a microcontroller. In some cases, bit depth in 
calculations is sacrificed due to the limitations of the FPGA. 

The microcontroller’s strength in motor control is supporting 
a wide variety of control loops. Because the control loops are 
written in C code, they can be implemented very close to how 

they are developed in a motor control simulation. This makes it 
much easier to verify the implemented control loops and ensure 
the implementation matches the simulation for a project. 

The execution time of the control loops will vary more than 
in a FPGA based solution, but this is rarely a problem as the 
microcontroller can run more calculations per second than most 
FPGA solutions and natively perform floating point math. 

The microcontroller also shares a common architecture with 
other Microchip Arm based microcontrollers. These 
microcontrollers are commonly used in commercial and 
industrial applications in much higher volumes than what we see 
in space applications. This creates a large ecosystem of 
examples and demos that can be ported to the microcontroller to 
enable the user to experiment with various control schemes 
which can save significant time compared to starting from 
scratch.  

E. Logic and Software Configuration 
The ASIC is configured by design when it is fabricated. 

Some ASICs allow some configuration with external jumpers or 
command inputs. 

An antifuse based FPGA is programmed initially once 
before installation onto a board. Once the FPGA is programmed, 
it cannot be updated. A SRAM or Flash based FPGA is typically 
loaded with a bootloader from a saved image in memory. The 
bootloader can also implement desired features such as 
redundant software images that are often required for space 
applications to protect against radiation caused bit flips. These 
images can often be updated to implement new features, adjust 
operational/control schemes, and tune the motor control. 

The microcontroller can load application software (ASW) 
directly from internal flash or from external memory through a 
parallel interface. A ROM bootloader is also available to load 
software from selected interfaces. The bootloader validates the 
software’s CRC to ensure the software is valid before running. 
The available interfaces to load software through the bootloader 
include external SPI memory, or a direct software load on start 
up through a UART or SpaceWire link. The bootloader also 
permits the user to load software directly to memory without 
running ASW first. This feature is helpful to recover from a 
software issue that prevents the normal operation of software 
which is typically required to access memory. 

One limiting feature of the bootloader implementation is that 
the user cannot specify a secondary software image to load if the 
primary image fails. This is often required in critical applications 
as memory can be corrupted in radiation environments over 
time. This can be mitigated at a higher system level as the 
bootloader can be used to write a new software image to replace 
the corrupted image or by loading software directly from the 
communication interface. 

III. SUMMARY 

A. ASICs 
The ASIC implementation will typically require less support 

circuitry and have well established test and verification 
programs since the motor controller will only operate over a 
known and defined range. 
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The initial ASIC development can be very expensive as the 
developer must complete the process of designing, laying out 
and then fabricating a custom IC. The design process must 
choose the interfaces and options to support which then get built 
into the final motor controller. These choices also fix the 
interfaces which can be a constraint on the flexibility of the 
product for future applications.  

The main downside of the ASIC are the high initial 
development costs and the limited flexibility of the design to 
support new applications as motor control concepts constantly 
add new combinations of feedback mechanisms, commutation 
schemes and control logic to tailor solutions to optimize the 
performance of a system. The main upside of the ASIC solution 
is that the cost can be much lower if the application’s 
requirements can be met by an existing design. 

B. FPGAs 
FPGA based motor controllers are the most common 

solutions for space applications. The flexibility to configure 
logic enables almost any command input and control scheme. 
FPGAs also come in many different sizes with different feature 
sets enabling simple designs to extremely complex exquisite 
solutions. The main downside of FPGA solutions is the required 
complexity to add in the various support circuits and the total 
cost of solution. 

C. Microcontroller 
The microcontroller can replace the FPGA most designs that 

controls one or two motors. The integration of the command 
interface and feedback is typically quicker, and the control loops 
can be developed to match simulations much more easily. 
Integrating capabilities into the microcontroller such as the ADC 
also reduces the complexity and cost of the design while 
improving performance. 

 Being able to reprogram the microcontroller also adds a 
capability normally associated with significantly more 

expensive FPGAs that can significantly reduce the integration 
risk. 

If a design requires the control of more than two motors, the 
reduced cost of the microcontroller compared to a larger FPGA 
may still result in a lower system cost overall. Many 
sophisticated systems feature multiple motor controllers tied 
back to a Single Board Computer (SBC) that commands the 
individual elements achieve a system level movement solution. 

One additional benefit of using a microcontroller is that the 
pool of C software developers is significantly larger than VHDL 
developers. It is often easier find engineers who have experience 
on similar platforms and can learn a new one to start developing 
C software compared to VHDL. 
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